Regional spore dispersal as a factor in disease risk warnings for potato late blight a proof of concept

Geert Kessel, Pete Skelsey, Bert Holtslag, Arnold Moene & Wopke van der Werf.

<u>Outline</u>

- Introduction
- Models
- Goals & applications
- Dispersal modeling & spray decisions
 - Components of spray decisions
 - Concepts
 - Perceptions
 - Implementation
- Field trials
- Results
- Conclusions

Introduction

Research Objectives (PhD project Pete Skelsey)

- Create tools to improve understanding of spatial PLB epidemiology
 - Field scale potato late blight model (spatial).
 - Models for release, and escape of sporangia.
 - Models for dispersal, survival & deposition of sporangia.

Explore management approaches that suppress potato late blight:

- Reduce fungicide inputs (Umbrella plan)
 Good PLB control, as little fungicides as possible
- Additional spatial strategies for PLB management (DuRPh)

PLB disease cycle: spatial model

nfect new hosts

Dispersal

Spore production

Release

Lesion growth

WAGENINGEN UNIVERSITY PLANT SCIENCES

Model application

R-gene deployment: PLB buffering landscapes (DuRPh)

Decision support (Umbrella plan)

Umbrella plan:

- Reduce environmental impact of fungicide use against PLB by 75%.
- Short term: Improve Fungicide effectiveness:
 - Match operational requirements and fungicide characteristics
 - Reduced dose rates (protectants) on more resistant cultivars
 - Modified spray intervals on more resistant cultivars
- Long-term: Host resistance
 - Classical breeding & GM techniques

Infection risks & Spray decisions

Three components of spray decisions:

- Crop
 - Remaining fungicide protection level
 - Resistance level
 - Maturation
- Weather
 - Critical periods / Potential Infection events
- Pathogen
 - Production & Influx of sporangia.....but
 - Sources (location & strength) unknown
 - Complex calculations
 - Lack of empirical dispersal data
- Added value for dispersal models?

Perceptions (I)

A single spore is all you need......

- Yield loss response
- 5000 simulations

Perceptions (II)

If the weather is suitable for disease development then inoculum will arrive at your crop !'

<u>Concept</u>

- How to include dispersal (modelling) in decision making?
 - We don't know where all the sources are !!
 - General appraisal of the suitability of the weather for long distance transport of viable sporangia:
 - Preventive control strategy
 - Spray is recommended by standard (aspatial) DSS
 - \rightarrow Crop is vulnerable
 - \rightarrow Weather is suitable for infection
 - Spatial 'add-on' component for existing DSS using dispersal models & hypothetical source
 - Dispersal day à do NOT modify spray recommendation
 - Non-dispersal day à Modify recommendation to NO spray

- a 3 Cultivars
 - Karakter (susceptible):
 - Seresta (moderately resistant):
 - Festien (resistant):
 - Spray timing for susceptible cultivars!

0.4 | Shirlan /ha 0.2 | Shirlan /ha 0.1 | Shirlan/ha

- Decision support systems:
 - Simcast (standard (non spatial)) DSS
 - 'Blight units' = f(T,RH), 'Fungicide units' = f(rain,T)
 - Simcast + spatial add on
 - 'Blight units' = f(T,RH), 'Fungicide units' = f(rain,T)
 - $'I_x' = f(T,u,R,LAI,IE)$
 - Weather forecast: MM5

The weather:
 2007 Severe blight year
 July wettest on record since 1901

Some fungicides were sold out (and not just in the Netherlands ...

Field trial Valthermond 2007 (WUR-PRI)

Field trial Valthermond 2007 (WUR-PPO)

Results:

- Good PLB control for all systems (Despite extreme weather)
- Significant reduction of fungicide input possible:
 - Reduced dose rates (cultivar dependent)
 - Modified spray intervals
- Effect of spatial add on:
 - Simcast: 15 sprays (always FU based...)
 - Simcast plus: 13 sprays + 1 modified spray interval for Festien (resistant) Max spray interval: 14 days
 - Full dose rate equivalents:
 - Karakter: 15 (15)
 - Seresta: 8.5 (8.5)
 - Festien: 5.25 (4.75)

- **n** The weather:
 - 2008 Moderate blight year
 - Wet period 2nd half of August
- 3 Cultivars
 - Karakter (susceptible):
 - Seresta (moderately resistant):
 - Festien (resistant):
 - Spray timing for susceptible cultivars!
- **n** 5 Decision support "systems":
 - Fungicide protection only (Simcast FU's)
 - FU's + Critical periods (blight days)
 - FU's + Critical periods (blight days) + spatial add on 33% criterium
 - FU's + Critical periods (blight days) + spatial add on 50% criterium
 - FU's + Critical periods (blight days) + spatial add on 33% criterium + dose rate adaptation to length of predicted critical period (0.1 l/ha minimum)

0.4 I Shirlan /ha 0.2 I Shirlan /ha 0.1 I Shirlan/ha

# Sprays			
	Resistant	Moderately resistant	Susceptible
FU's only	16	16	16
FU's + Critical period	10 (7)	10	10
FU's + Critical period + Spatial 33%	10 (7)	9	9
FU's + Critical period + Spatial 50%	3	9	9
FU's + Critical period + Spatial 33% + length critical period	9	8	9
Full dose rate equivalents			
FU's only	4.75	8.50	16.00
FU's + Critical period	6.75 (3.75)	5.50	10.00
FU's + Critical period + Spatial 33%	7.5 (4.5)	5.00	9.00
FU's + Critical period + Spatial 50%	5.00	5.00	8.25
FU's + Critical period + Spatial 33% + length critical period	3.63	3.40	5.30

n Conclusions 2007 & 2008

- Fungicide degradation
 - Solid blight control
 - Too many sprays
- Blightdays
 - Spray timing critical! (Inadequate definition blightdays in 2008)
 - Better timing of sprays
 - Reduction of # sprays
- Spatial 33% criterium
 - Beneficial for resistant cultivars
 - Potential to reduce # sprays by 30%
- Spatial 50% criterium
 - Beneficial for resistant cultivars but...
 - Too much risk (on resistant cultivars)
- Length Critical period
 - Beneficial for less resistant susceptible cultivars (3.5 5.5 full dose rate eq. / season!)

Thank you for your attention!

